mages taken via super-resolution microscopy reveal how the human nucleus organises transcription at much higher resolution than previously possible. According to the authors of a new study in the journal Nucleic Acids Research, the images shed light on how RNAs are produced in the immediate surroundings of active genes.

An international team led by the Centre for Genomic Regulation’s (CRG) Pia Cosma and the Bioland Laboratory at the Guangzhou Institutes of Biomedicine and Health (GIBH) in Guangzhou, China, reveals with nanometric resolution the distances of interaction between molecules that play a key role in transcription – small clusters of chromatin called clutches, the enzyme RNA Polymerase II and RNA.

The authors of the study found that newly transcribed RNA molecules are regulated in a more fine and precise way than previously thought. The findings are important because they further understanding about the organisation of chromatin, which is critical for a cell’s ability to tune the expression of thousands of genes and respond to its variable needs.

Transcription, once thought as an outcome of this organization, has proved to be a main player in actively shaping the chromatin. According to Alvaro Castells, Associate Researcher at the Bioland laboratory and first author of the paper, “The traditional way of describing transcription was for it happening in big, dense regions including many molecules of the transcription machinery, without a clear organization. This study hints towards a finer and more precisely regulated process in which the newly transcribed RNA accumulates in smaller clusters around the actively transcribed regions of the DNA.”

Previous techniques could visualize active areas of transcription, but not give precise information about their shape and size. To improve image resolution, the researchers used a special type of super resolution microscopy that can obtain precise positional information of single molecules.

This technique provides a resolution ten times higher than conventional fluorescent microscopy. By combining these techniques with computational analysis, the researchers were able to precisely identify and quantify these RNA nanodomains and their interaction with RNA Polymerase II and chromatin.

“These images were captured thanks to several image and analytical methods we developed,” says ICREA Research Professor Pia Cosma, Group Leader at the CRG. “What’s particularly unique about this study is that it helped us visualize nascent RNAs at unprecedent resolution and see nascent RNA physical location with respect to the active nucleosome clutches. We next plan on using this type of analysis to look into gene expression kinetics more accurately.”
Subscribe to Directory
Write an Article

Recent News

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Tuneable reverse photochromes in the sol...

A new technique allows the design of solid materia...

Highlight

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

​En nuestro post hablamos sobre este interesante tipo de célula del...

Un estudio de INCLIVA muestra el efecto ...

by INCLIVA

Han desarrollado un estudio para evaluar la correlación entre el teji...

Photos Stream