The findings were published in the Autophagy journal and show a new strategy to tackle cancer based on the manipulation of dihydroceramides, a group of cellular lipids. The authors also describe for the first time the detection of mRNAs of two stress-related proteins – CHOP and TRIB3- in blood samples from patients undergoing clinical trial, supporting their use as pharmacodynamic biomarkers.

The research team was coordinated by Jose Miguel Lizcano from the INC and the UAB Biochemistry and Molecular Biology Department. For the past years, this team has investigated how ABTL0812 exerts its antitumor action. This molecule was developed by the biopharmaceutical company AbilityPharma located at the UAB Research Park. AbilityPharma contacted Dr. Lizcano to uncover the antitumor mechanism of action of ABTL0812. Since then, clinical trials have advanced in parallel with research in the laboratory.

In 2016, when clinical studies began, Dr. Lizcano’s laboratory discovered that this was the first anticancer drug in trials to induce toxic autophagy in tumor cells. Now, with this drug being tested in clinical phase II, the new study shows how toxic autophagy is produced.

IT IS DUE TO THE ALTERATION OF SOME LIPIDS, THE DIHYDROCERAMIDES

“Cancer cell death comes from alterations in the levels of cellular dihydroceramides, a family of cellular lipids. Elevated levels of dihydroceramides provoke a severe stress of the endoplasmic reticulum, a cellular organelle in charge of protein synthesis, resulting in the accumulation of defective proteins. As a consequence, cells activate a compensatory response, called Unfolded Protein Response (UPR). This response, when sustained in time, can induce autophagy that results in cancer cell death”, says Jose Miguel Lizcano.

To study the role of these lipids, CSIC researchers at the Institute of Advanced Chemistry of Catalonia (IQAC) led by researchers Gemma Fabriàs and Fina Casas, have synthesized compounds that induce increases in the levels of dihydroceramide, either enzyme inhibitors dihydroceramide desaturase or slow converting substrates. The team has carried out the analysis of lipidomas of cells and tumors, participated in the discussion of results and in the planning of experiments, contributing its experience in the chemical study of these molecules.

The study also explains why ABTL0812 does not affect non-cancer cells: “The main advantage of this molecule lies in its specificity for tumor cells. To survive the hostile environment, cancer cells overtake it by having elevated levels of ER stress and UPR activity. Our drug provokes cancer cells to overpass the stress level in which this response has protective effects, causing their death, while healthy cells still have a wider margin”, says Pau Muñoz, researcher at the INC and first author of the article.

Researchers consider that this new mechanism of action could be used safely in the treatment of different types of cancers. In fact, the study also served to present the preliminary results on pancreatic and other biliary tract cancer models.

This work will be presented by AbilityPharma at the American Association for Cancer Research (AACR) 2020 Congress. “The description of this mechanism of action is a very important step for AbilityPharma, and shows the excellent collaboration engaged by our company and the INc-UAB. Also, it supports a broader use of ABTL0812 in other cancer paradigms, apart from endometrial and squamous lung carcinoma” explains Carles Domènech, AbilityPharma’s executive chairman.

The study was also performed in collaboration with researchers from the Complutense University of Madrid (UCM), the Catalan Institute of Oncology (ICO), the Vall d’Hebron Research Institute (VHIR), the Vall d’Hebron Institute of Oncology (VHIO) and the Bellvitge Biomedical Research Institute (IDIBELL).

The research was funded by grants from the Spanish Ministry for the Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) (RTC-2017-6261-1 and IPT-2012-0614-010000), theagency for business competitiveness ACCIÓ (Government of Catalonia), the Centre for the Development of Industrial Technology (CDTI) and the Empresa Nacional de Innovación, Sociedad Anónima (ENISA).

Reference:

Muñoz-Guardiola P, Casas J, Megías-Roda E, Solé S, Perez-Montoyo H, Yeste-Velasco M, Erazo T, Diéguez-MartínezN, Espinosa-GilS, Muñoz-Pinedo C, YoldiG, AbadJL, Segura MF, MoranT, Romeo M, Bosch-Barrera J, Oaknin A, Alfón J, Domènech C, Fabriàs G, Velasco G, Lizcano JM. The Anti-Cancer Drug ABTL0812 Induces ER Stress-Mediated Cytotoxic Autophagy by Increasing Dihydroceramide Levels in Cancer Cells. Autophagy 2020 May 13. doi: 10.1080/15548627.2020.1761651.

Fuente: Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)

https://www.iqac.csic.es/es/identifican-una-nueva-via-para-atacar-a-las-celulas-tumorales/
Subscribe to Directory
Write an Article

Recent News

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Tuneable reverse photochromes in the sol...

A new technique allows the design of solid materia...

Highlight

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

​En nuestro post hablamos sobre este interesante tipo de célula del...

Un estudio de INCLIVA muestra el efecto ...

by INCLIVA

Han desarrollado un estudio para evaluar la correlación entre el teji...

Photos Stream