La creatinina es un producto de desecho que se genera y se elimina en el cuerpo humano de forma continua. Nuestros músculos obtienen la energía necesaria para ejercer sus funciones de una proteína llamada creatina fosfato. Cuando se consume esta proteína se genera creatinina como producto de desecho, y se lanza hacia el torrente sanguíneo de donde pasa a los riñones que la eliminan en la orina. Un aumento de la cantidad de creatinina en la sangre significa que los riñones no están haciendo bien su trabajo y, por lo tanto, es indicativo de que se está produciendo una insuficiencia renal. Su medición es útil en el diagnóstico de diversas nefropatías, y su control permanente es de gran utilidad en aquellos pacientes que requieren de diálisis.

A pesar de la importancia que tiene la cuantificación exacta de los niveles de creatinina, los métodos actuales utilizados para su determinación en laboratorios y hospitales son complicados, limitados y no están exentos de errores ya que suele haber problemas de interferencia de otros metabolitos.

En este contexto los grupos de investigación de Francisco Andrade, de la Universitat Rovira i Virgili (URV), y del profesor Pau Ballester, del Institut Català d’Investigació Química (ICIQ), han desarrollado un sensor basado en un electrodo selectivo de iones, es decir, un sistema que detecta al analito de interés y permite observar esta detección a través de un cambio en la fuerza electromotriz. En este caso el sistema está formado por un nuevo ionóforo con estructura de calix[4]pirrol con gran afinidad tanto por la creatinina, como por el catión -un ión positivo- derivado de la misma. Este ionóforo se integra en la membrana polimérica de un electrodo aumentando significativamente su sensibilidad y selectividad, de manera que la presencia del analito induce un cambio en la fuerza electromotriz que permite cuantificar su concentración. El sensor tiene un límite de detección inferior a los niveles normales en sangre (0,06 – 0,42 mM) y en orina (3 – 25 mM), lo que permite eliminar el fenómeno conocido como biofouling -acumulación indeseada de compuestos lipofílicos en la superficie de la membrana polimérica que disminuiría la selectividad del sensor- mediante una dilución de la muestra.

De este modo tenemos un método no invasivo, rápido y preciso para detectar los niveles de creatinina en fluidos biológicos. El margen de error es mucho menor que el de otros métodos disponibles en el mercado y tiene un coste muy bajo. Presenta una alta sensibilidad y selectividad y tiene la ventaja añadida de que se podría disponer de un dispositivo portátil que permitiría hacer el análisis en casa, algo especialmente útil para determinados pacientes, por ejemplo aquellos que requieren de diálisis. Se ha presentado una solicitud de patente con los resultados obtenidos.

“Es gratificante ver que receptores moleculares diseñados y sintetizados en nuestro laboratorio juegan un papel fundamental en el funcionamiento de nuevos dispositivos sensores potenciométricos para la cuantificación de creatinina en muestras reales de sangre y orina. Dichos sensores ha sido preparados en la URV y producen resultados análogos o incluso superiores a los métodos analíticos actuales, solventan sus limitaciones, tienen un bajo coste de producción y son fáciles de utilizar. Nuestros colaboradores están convencidos de que su implementación en la asistencia sanitaria constituye una aplicación altamente viable” –dice el profesor Ballester.

El profesor Andrade asegura que mediante la colaboración multidisciplinaria “hemos logrado un progreso científico destacado y hemos realizado una patente con un potencial de aplicación muy importante”. Desde el punto de vista científico, la determinación de creatinina de una forma simple, eficaz y económica “ha sido un desafío muy grande”. Por otra parte, la tecnología desarrollada puede ser revolucionaria a la hora de implementar sistemas remotos de cuidado de pacientes, como en la telemedicina. Además, en colaboración con médicos, diseñadores y agentes de transferencia de tecnología, “hemos conseguido financiación del programa “CaixaImpulse” para poder encontrar las vías más adecuadas para llegar al mercado” apunta el investigador.

El trabajo ha sido publicado en Angewandte Chemie International Edition y ha sido destacado como Hot Paper.

Referencia bibliográfica: “Recognition and Sensing of Creatinine”. T. Guinovart, D. Hernández-Alonso, L. Adriaenssens, P. Blondeau, M. Martínez-Belmonte, F. X. Rius, F. J. Andrade, P. Ballester. Angew. Chem. Int. Ed., 2016, DOI: 10.1002/anie.201510136.

Imagen: Los investigadores Pau Ballester –derecha- y Francisco Andrade, con modelos moleculares del ionóforo y la creatinina.


Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

Uso de RNA móviles para mejorar la asim...

El gen AtCDF3 promueve una mayor producción de az...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Explican los fundamentos moleculares de ...

by INCLIVA

Esta patología afecta tanto a niños como a adultos y provoca la infl...

Diapositiva de Fotos