La revolución de las tecnologías de la información ha sido tradicionalmente sinónima de empaquetar más chips en menos espacio para aumentar la capacidad de computación. La famosa "ley de Moore", que prevé que el número de transistores por chip se duplicará cada dos años, es el marco en el que se desarrollaba esta carrera tecnológica que ha conseguido mantener un ritmo frenético de mejoras durante mucho tiempo. Ahora que la "ley de Moore" se acerca a sus límites físicos, gana importancia una estrategia alternativa para mejorar los chips que va más allá de aumentar el número de transistores. Con el apodo de "more than Moore" ("más que Moore"), investigadores de todo el mundo intentan añadir nuevas funcionalidades a los chips integrando materiales inteligentes sobre la todavía omnipresente e indispensable base de silicio.

Entre los llamados materiales inteligentes, los piezoeléctricos destacan por su capacidad de convertir una deformación mecánica en voltaje (que permite generar energía o cargar una batería) o bien, al contrario, modificar su forma cuando se les aplica un voltaje (algo que se puede aplicar, por ejemplo, en el diseño de ventiladores piezoeléctricos que refrigeren un circuito). A pesar de su interés, la integración de la piezoelectricidad con la tecnología basada en el silicio es extremadamente compleja. El número de materiales piezoeléctricos es limitado y los piezoeléctricos más eficientes son materiales ferroeléctricos basados en el plomo, con implicaciones ambientales importantes. Además, sus propiedades se ven muy afectadas por los cambios de temperatura, haciendo que sea difícil aprovecharlos en el contexto de un ordenador típico con componentes que pueden alcanzar temperaturas de hasta 150 grados Celsius.

Existe, sin embargo, otro tipo de propiedad electromecánica que permite imitar las funciones de un piezoeléctrico, doblando los materiales en lugar de apretarlos. Esta característica se denomina flexoelectricidad y, aunque hace casi medio siglo que se conoce, generalmente se ha ignorado porque sus efectos son relativamente débiles y casi imperceptibles en la macroescala. Cuando estudiamos esta propiedad en la nanoescala, sin embargo, la flexoelectricidad puede ser tan o más importante que la piezoelectricidad: sólo hay que tener en cuenta que doblar un material grueso requiere mucha energía, pero doblar algo bien delgado resulta mucho más sencillo. Además, la flexoelectricidad ofrece otras propiedades interesantes: es una propiedad universal de todos los dieléctricos, lo que significa que podemos evitar el uso de materiales tóxicos basados en el plomo, y se trata de una propiedad más lineal e independiente de la temperatura que la piezoelectricidad de un ferroeléctrico.

Investigadores del Institut Català de Nanociència i Nanotecnologia (ICN2), en colaboración con la University of Cornell (USA) y la University of Twente (Holanda), han logrado producir el primer sistema microelectromecánico (MEMS) flexoeléctrico integrado en silicio. Han descubierto que en la nanoescala se mantienen las características ventajosas de la flexoelectricidad y, además, los resultados de su primer prototipo (palancas que se doblan en respuesta a un voltaje) ya son comparables a los de las micro-palancas piezoeléctricas más avanzadas. Si esto no fuera suficiente, la universalidad de la flexoelectricidad implica que buena parte de los materiales dieléctricos empleados actualmente en la tecnología de los transistores ya son flexoeléctricos. Así pues, este trabajo abre la puerta a la integración de funcionalidades electromecánicas "inteligentes" sobre materiales y tecnologías ya existentes. Estos resultados se han publicado esta semana en la revista Nature Nanotechnology.

El proyecto, encabezado por el Dr. Umesh Bhaskar y el Profesor ICREA Gustau Catalán, del Grupo Nanoelectrónica de Óxidos del ICN2 en Barcelona, se ha financiado a través de una European Research Council (ERC) Consolidator Grant y un Proyecto español del Plan Nacional de Excelencia Investigadora, junto con becas nacionales de los grupos de Cornell y Twente.

Artículo científico:
Umesh Kumar Bhaskar, Nirupam Banerjee, Amir Abdollahi, Zhe Wang, Darrell G. Schlom, Guus Rijnders, and Gustau Catalan; A flexoelectric microelectromechanical system on silicon. Nature Nanotechnology, DOI: 10.1038/nnano.2015.260 (November 16th, 2015). http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2015.260.html

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Tuneable reverse photochromes in the sol...

A new technique allows the design of solid materia...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Un estudio de INCLIVA muestra el efecto ...

by INCLIVA

Han desarrollado un estudio para evaluar la correlación entre el teji...

Diapositiva de Fotos