La metilación del ADN actúa como el diario personal de una célula. La lectura de esta información a gran escala puede impulsar la próxima generación de terapias avanzadas para enfermedades como el cáncer. Entonces, ¿por qué aún no hemos aprovechado esta mina de oro de información?

Imagínate un evento que lo cambió todo. ¿Cuándo comenzó y por qué? Los historiadores podrían responder a esta pregunta indagando en el pasado y estudiando fotografías, cartas y diarios. Estos relatos de primera mano son pruebas cruciales que proporcionan una visión sin filtros de los acontecimientos a medida que ocurren, ayudando a reconstruir el pasado para explicar y hacer frente a los desafíos del presente.

¿Y si pudiéramos hacer lo mismo con el cáncer? Al explorar las experiencias de las células en el punto de partida del cáncer, podemos comprender mejor el comportamiento de la enfermedad, cómo podría propagarse y cuál es la mejor manera de erradicarla. Profundizar en la historia del cáncer es fundamental para identificar las condiciones que dan lugar a las células iniciadoras de tumores y, al igual que encontrar el punto de partida de un incendio forestal, ayudar a poner en marcha medidas para evitar que ocurra.

Al igual que las personas, las células individuales también llevan un diario. En lugar de papel, las células escriben sobre el ADN, el manual de instrucciones de la vida, y en lugar de un bolígrafo, usan enzimas. Al igual que un editor que hace cambios en un manuscrito, las enzimas escriben o borran etiquetas químicas conocidas como marcas de metilación del ADN. Este es un proceso biológico fundamental que puede sintonizar la actividad del ADN.

La ciencia buscar usar estas entradas del diario, también conocidas como el ‘metiloma’ de ADN, para conocer la historia personal de una célula. Si escaneamos muchas células diferentes a la vez, se podría identificar las poblaciones de células que se comportan de manera diferente. Estas células podrían estar escribiendo o borrando palabras en un patrón diferente, un comportamiento que podría corresponder a enfermedades como el cáncer.

Sin embargo, el cuerpo humano tiene billones de células, y cualquier cambio de comportamiento o patrón que sea característico de la aparición de una enfermedad es como buscar una aguja en un pajar. Para detectarlo correctamente, necesitamos una tecnología capaz de leer muchas células simultáneamente. Pero a pesar de que el metiloma del ADN se predijo ya en 1948, los esfuerzos para estudiarlo a gran escala han permanecido fuera de nuestro alcance. Entonces, ¿qué es lo que impide que el campo contribuya a una nueva era de la medicina?

La Dra. Renée Beekman, jefa de grupo del Centro de Regulación Genómica, es experta en epigenómica, un campo que tiene como objetivo comprender la actividad del ADN. En una perspectiva publicada recientemente en la revista Frontiers in Molecular Biosciences, el Dr. Beekman y los estudiantes de doctorado Leone Albinati y Agostina Bianchi describen el potencial del campo para ayudar a identificar el origen del cáncer y los obstáculos que los investigadores tienen que superar para llegar allí.

Millones de páginas para descifrar dentro de cada celda

Para leer el diario de una célula, o su metiloma de ADN, los equipos científicos tienen que utilizar una tecnología de secuenciación de metilación del ADN de una sola célula. Esta técnica consiste en aislar células individuales, extraer ADN y luego usar un método para determinar el estado de metilación de los componentes básicos del ADN en todo el genoma.

Sin embargo, extraer la máxima cantidad de información posible con esta técnica es una gran hazaña tecnológica. El ADN está formado por diferentes moléculas o 'letras'. Dentro de cada célula humana, hay 58 millones de instancias de la letra C seguida de la letra G, la mayoría de las cuales están metiladas. Se trata de un gran volumen de datos para generar y procesar, y eso es solo para una célula.

Según el Libro Guinness de los Récords, ‘A la recherche du temps perdu’, de 13 volúmenes, de Marcel Proust, es la novela más larga del mundo. Con 9,6 millones de letras, necesitaríamos una novela seis veces más grande solo para leer la metilación de CpG. "Para encontrar patrones significativos que informen el origen del cáncer, necesitamos trazar muchos sitios de metilación del ADN en miles de células. Esa es la magnitud de la tarea a la que nos enfrentamos", dice Agostina Bianchi, coautora del artículo.

Si bien este gran volumen de datos se puede procesar y almacenar correctamente, puede estar incompleto. Esto se debe a que los métodos actuales pueden degradar el ADN mientras se lee, lo que lleva a una pérdida de información para los eventos individuales de metilación del ADN a medida que se recogen de la célula y se transfieren a un experimento y luego a una computadora.

Estas limitaciones tecnológicas significan que, históricamente, solo se ha podido capturar una instantánea aleatoria de un pequeño conjunto de sitios de metilación del ADN en unos pocos miles de células. En otras palabras, solo podemos leer al azar partes del diario de una célula, e incluso entonces no entendemos completamente todas las entradas y nos perdemos información significativa.

"Necesitamos encontrar formas de capturar la parte informativa del diario de una manera sistemática e interpretar sus entradas matizadas antes de que podamos aprovechar todo su potencial", dice Leone Albinati, coautor del estudio.

Destellos de esperanza

A pesar de los enormes obstáculos tecnológicos que hay que superar, existe un importante progreso en el campo. La Dra. Beekman ha creado recientemente una nueva herramienta que puede trazar patrones de metilación del ADN a escala. Junto con el Dr. Lars Velten, también jefe de grupo en el Centro de Regulación Genómica, su equipo desarrolló scTAM-seq, un nuevo método que puede estudiar subconjuntos de sitios de metilación del ADN de interés en hasta 10.000 células individuales a la vez, entre 25 y 100 veces más de lo que era posible anteriormente.

"Funciona centrándose en las partes específicas del ADN que tienen más probabilidades de cambiar, en lugar de tratar de mirar todo, lo que lo convierte en una estrategia eficiente y poderosa para buscar tipos raros de células, incluidas aquellas que pueden explicar el origen del cáncer", dice la Dra. Beekman.

sc-TAM-seq está ayudando a que el campo avance porque puede estudiar muchas células sin ser demasiado caro. A medida que equipos científicos por todo el mundo continúen desarrollando herramientas similares, se espera que el campo se vuelva aún más eficiente y rentable.

Otras técnicas que permiten el estudio del metiloma del ADN junto con otras capas de información, como las moléculas de ARN, proporcionarán una visión aún más profunda de lo que está sucediendo dentro de una célula. "El transcriptoma explica lo que hace una célula en la actualidad. La combinación de esta información con información del pasado puede reconstruir la historia de cómo llegó allí. Queremos ser capaces de detectar los eventos que 'cambian la vida' y que alteran para siempre una célula, por ejemplo, para rastrear cómo se convierte en una célula cancerosa", añade la Dra. Beekman.

"Hace treinta años, no podíamos imaginar la creación de un mapa de todas las letras de la secuencia de ADN humano, sin embargo, hoy en día es un bien común que es fácilmente accesible para la investigación biomédica. En este momento no podemos imaginar la lectura de todas las partes informativas del metiloma del ADN en miles de células individuales a la vez. Sin embargo, las innovaciones tecnológicas nos acercarán poco a poco a este objetivo", concluye.

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

La exposición al frío y al calor duran...

El equipo de investigadores observó cambios en el...

Uso de RNA móviles para mejorar la asim...

El gen AtCDF3 promueve una mayor producción de az...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Un ensayo de microscopía dinámica del ...

by CSIC - Centro Superior de Investigaciones Científicas

La revista ‘Nature Protocols’ selecciona esta técnica como “pro...

Diapositiva de Fotos