Un equipo internacional de científicos, liderado por investigadores del Instituto de Biomedicina de Sevilla (IBiS), la Universidad de Sevilla, la «Hopkins Marine Station» de la Universidad de Stanford y la «Scripps Institution of Oceanography» de la Universidad de California en San Diego, ha descubierto un nuevo mecanismo celular que explica cómo las células pueden adaptarse a fenómenos de compresión ocasionada durante el crecimiento de los tejidos.

Su trabajo, publicado en la prestigiosa revista Development, ha sido realizado usando la estrella de mar como modelo, y podría tener futuras implicaciones en la comprensión de cómo las células sanas se pueden adaptar a la presión ejercida por las células tumorales que crecen sin control.

Las células epiteliales son los bloques de construcción de los animales. Durante el desarrollo embrionario, se dividen rápidamente aumentando el número de células del organismo. Las células epiteliales se organizan en capas donde se presentan fuertemente unidas entre sí. Esta característica hace que, en los animales adultos, los tejidos epiteliales recubran todas las superficies externas del organismo, así como las cavidades internas. Además, el tejido epitelial forma las glándulas y es el tejido predominante en muchos órganos, como el hígado o los riñones. Conforme las células epiteliales aumentan su número tienen que acomodarse a un espacio restringido lo que lleva a la compactación del tejido. Por tanto, estas células deben organizarse correctamente a la vez que “soportan” la presión de las células vecinas que también están proliferando.

“La correcta coordinación entre el crecimiento y la organización celular es un proceso muy complejo. Usando el embrión de la estrella de mar como modelo hemos podido abordar este problema.” indica el Dr. Luis María Escudero, investigador responsable del Grupo “Mecanismos de organización tisular” del Instituto de Biomedicina de Sevilla (IBiS) y Profesor del Departamento de Biología Celular de la Universidad de Sevilla. “Este embrión es ideal para ello, ya que podemos estudiar en tiempo real como las células se dividen de forma sincrónica haciendo que su número aumente de forma exponencial hasta llegar al estadio de 1024 células.”

“Hemos obtenido películas en las que se observan todos los pasos de este proceso. Un aspecto interesante de este modelo es que los embriones están encapsulados. En las primeras fases de su desarrollo, cuando la proliferación es más rápida, las células aumentan en número en un espacio limitado”, explica Antonio Tagua, uno de los investigadores principales del estudio publicado en la Revista “Development”. Para realizar estos análisis se ha utilizado CartoCell, un novedoso método de análisis de imagen que ha sido recientemente publicado por el mismo grupo del Dr. Escudero. CartoCell es una herramienta software basado en aprendizaje profundo (Deep-learning) que permite procesar de manera rápida y automática imágenes en tres dimensiones como las de las películas de los embriones de estrella de mar.

Como conclusión directa de sus análisis, el Dr. Escudero añade “lo que hemos observado es que cuando el tejido empieza a compactarse, debido al aumento del número de células en un espacio confinado, las células que tenían forma de prisma empiezan a adoptar la forma de escutoide. Esto es aún más patente cuando se hace un seguimiento de las células individualmente. Observamos que justo tras una división celular aumenta muchísimo la posibilidad de que la célula adopte la forma de escutoide. Por tanto, concluimos que el aumento de densidad celular causado por la proliferación está relacionado con el cambio de forma. Este cambio de forma ocurre porque las células soportan mejor la compresión cuando son escutoides”.

Este mismo equipo de científicos publicó en el año 2018 en la revista Nature Comunications un artículo que tuvo un gran impacto científico y mediático, en el que demostraban que las células epiteliales pueden adoptar durante la formación de los órganos una forma geométrica que no estaba descrita hasta ese momento: el escutoide. En ese momento demostraron que las células adoptaban la forma de escutoide para hacer más estables los tejidos curvos. Ahora, la novedad es que es la primera vez que se monitoriza la aparición de escutoides a lo largo del tiempo. Esto ha permitido demostrar que los escutoides se pueden formar por razones que no están relacionadas con la geometría, como la presión ejercida por otras células u otras estructuras.

Este estudio amplía aún más la importancia del escutoide al demostrar que las células pueden adoptar esta forma no solo para adaptarse a la curvatura de los tejidos, sino también a situaciones de compresión causada por el aumento del número de células. En el futuro, se podría considerar aplicaciones relacionadas con la investigación del cáncer. En estos casos, algunas células proliferan sin control, invadiendo y comprimiendo las células sanas adyacentes que deben adaptarse rápidamente. Será interesante estudiar si en estos casos se producen cambios de morfología que tengan relación con la forma del escutoide.

Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación (PID2019-103900GB-I00 AEI/10.13039/501100011033 y PID2022-137101NB-I00/AEI/10.13039/501100011033/FEDER, UE).

Referencia: “Local and global changes in cell density induce reorganisation of 3D packing in a proliferating epithelium”

https://doi.org/10.1242/dev.202362

SobreIBiS

El Instituto de Biomedicina de Sevilla (IBiS) es un centro multidisciplinar cuyo objetivo es llevar a cabo investigación fundamental sobre las causas y mecanismos de las patologías más prevalentes en la población y el desarrollo de nuevos métodos de diagnóstico y tratamiento para las mismas.

El IBiSlo forman 42 grupos consolidados y 41 grupos adscritos dirigidos por investigadores de la Universidad de Sevilla, el Consejo Superior de Investigaciones Científicas (CSIC) y los Hospitales Universitarios Virgen del Rocío, Virgen Macarena y Virgen de Valme organizados en torno a cinco áreas temáticas: Enfermedades Infecciosas y del Sistema Inmunitario, Neurociencias, Onco-hematología y Genética, Patología Cardiovascular, Respiratoria / Otras Patologías Sistémicas y Enfermedades Hepáticas, Digestivas e Inflamatorias.

El IBiS depende institucionalmente de la Consejería de Salud y Consumo de la Junta de Andalucía; el Servicio Andaluz de Salud (SAS); la Consejería de Universidad, Investigación e Innovación; la Universidad de Sevilla y el Consejo Superior de Investigaciones Científicas (CSIC). Y está gestionado por la Fundación para la Gestión de la Investigación en Salud de Sevilla (FISEVI).

Imagen: Cuatro células epiteliales con la forma de escutoide. A la izquierda se observan la superficie apical y la superficie basal de las células y cómo en cada superficie tienen diferentes vecinos. A la derecha se muestra una reconstrucción de las cuatro células en las que se ve que tienen forma de escutoide.

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

La exposición al frío y al calor duran...

El equipo de investigadores observó cambios en el...

Uso de RNA móviles para mejorar la asim...

El gen AtCDF3 promueve una mayor producción de az...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Expertos europeos debaten el nuevo ensay...

by IMIM - Institut Hospital del Mar d'Investigacions Mèdiques

El estudio clínico SAGITTARIUS, un nuevo ensayo clínico financiado p...

Diapositiva de Fotos