• Graphene nanoribbons acquire anomalous topological state of matter when narrowed down to nanometres in width, inducing gapped phases with exotic properties that can be utilized in future technology.
  • In the study, conducted in the framework of SPRING project, CiQUS researchers synthesized molecular precursors for GNRs using solution chemistry.
  • Results has now been published in the prestigious journal Nature Communications.

In the last decades, a mathematical description of symmetries in nature called topology has been applied to describe and predict new electronic and magnetic properties of materials. A very simple aspect of topology connects a symmetry in the atomic structure of a crystal with a class of materials. Many materials that we know or use in current technology (silicon, diamond, gallium arsenide, etc.) belong to a topological class called trivial, meaning standard, and behave as normal semiconductors or insulators.

Novel materials with “anomalous” topology (technically called non-trivial) can be fabricated with advanced techniques of material science, which achieve control of their structure with atomic precision. For such materials, mathematical models predict “exotic” properties that can be utilized in future technology, such as that they are insulating inside and metallic at their surfaces.

In a recent article published in the journal Nature Communications(link is external), a multidisciplinary group of Spanish research teams reported that certain stripes of graphene called graphene nanoribbons (GNRs) acquire the anomalous topological state of matter when narrowed down to just a few nanometres in width.

GNRs are atomically thin, planar carbon nanostructures that can be obtained from a sheet of graphene (carbon atoms arranged in a hexagonal lattice) by cutting in different directions. Conceptually, they can be thought of as stripes of graphene aligned along different directions, i.e, as nanoscale wires that may be used to transport an electronic current.

The scientists fabricated with atomic precision narrow GNRs of different width and orientation, like in the figure below, and demonstrated that all types convert from a metallic into an insulating state when the width is reduced below a few nanometers. Unexpectedly, they found that this new state corresponds to a non-trivial topological class.

Because of their anomalous Topology, electronic states were found localized at the ends of the ribbons (as shown in the figure). These states represent a novel source of non-conventional magnetism with promising applications in quantum technologies.

Within the framework of the FET OPEN Project SPRING(link is external), this study was achieved through a multidisciplinary collaboration combining tools and methods of chemistry and physics. First, organic chemists at the CIQUS institute in the University of Santiago de Compostela synthesized molecular precursors for GNRs using solution chemistry. Physicist at CIC nanoGUNE and at the Centro de Física de Materiales (CFM), in San Sebastian, did the assembling reaction on metal surfaces to produce the desired GNRs with atomic precision and investigated their anomalous electronic properties with scanning tunnelling microscopy. The physicist at the Donostia International Physics Centre (DIPC) did theoretical simulations that demonstrated the anomalous topology of the narrow GNRs. This result widens the scope for the use of graphene nanostructures in emerging quantum technologies.

Reference

Jingcheng Li, Sofia Sanz, Nestor Merino-Díez, Manuel Vilas-Varela, Aran Garcia-Lekue, Martina Corso, Dimas G. de Oteyza, Thomas Frederiksen, Diego Peña, Jose Ignacio Pascual. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nat. Commun. 2021, 12, 5538. https://doi.org/10.1038/s41467-021-25688-z

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

Tuneable reverse photochromes in the sol...

A new technique allows the design of solid materia...

La Unidad de Chequeos de la Clínica sup...

El estudio realizado sobre una muestra significati...

Destacadas

Entrevista con Dámaso Molero, director ...

by 3P Biopharmaceuticals

Dámaso Molero:" Creo que en Latinoamérica habrá negocio en el d...

Desarrollan un material con propiedades ...

by Fundación Andaluza para la Divulgación de la Innovación y el Conocimiento

Un equipo de investigación de la Universidad de Cádiz ha creado en l...

Diapositiva de Fotos