El trabajo, publicado en la revista Nature Chemistry, describe una proteína con un átomo metálico (zinc) en su interior, que permite acelerar la velocidad de reacción a niveles superiores a los de enzimas naturales.

La investigación demuestra, por primera vez, que es posible diseñar, mediante simulación computacional, proteínas que contienen metales de transición para catalizar con gran eficiencia procesos químicos desconocidos en la naturaleza.

Una investigación del CIC bioGUNE -miembro del Basque Research & Technology Alliance, BRTA- ha diseñado una proteína capaz de catalizar con gran eficiencia una reacción química sin precedente en la naturaleza. Esta proteína alberga en su interior un átomo metálico (de zinc), que permite acelerar la velocidad de una reacción hasta un nivel superior al que proporcionan las enzimas naturales que catalizan procesos semejantes. El trabajo para desarrollar con éxito esta enzima artificial ha combinado técnicas de simulación por ordenador y de evolución dirigida en el laboratorio.

Esta investigación multidisciplinar demuestra, por primera vez, que es posible diseñar, mediante simulación computacional, proteínas que contienen metales de transición para catalizar, con gran eficiencia, procesos químicos desconocidos en la naturaleza. A partir de una estructura proteica artificial, se predijeron computacionalmente diversas mutaciones en su sitio activo que fueron beneficiosas para catalizar la reacción deseada”, explica Gonzalo Jiménez Osés, investigador Ikerbasque en CIC bioGUNE.

El éxito del trabajo, que ha sido publicado en Nature Chemistry, radica en la combinación de la modelización computacional con la técnica experimental conocida como evolución dirigida, que fue reconocida con la concesión del Premio Nobel de Química a Frances H. Arnold en 2018.

Las técnicas computacionales empleadas en este trabajo predicen mutantes con actividad catalítica hacia el proceso deseado. Esta predicción inicial es absolutamente indispensable para seleccionar los candidatos óptimos con los que se llevan a cabo los experimentos de evolución dirigida en el laboratorio, que finalmente permiten llegar a obtener las enzimas que muestran una eficacia extraordinaria.

Por tanto, este trabajo abre la puerta a la expansión del arsenal disponible de biocatalizadores para llevar a cabo reacciones “no naturales”, de gran interés para la industria química. De esta manera se elimina la necesidad de partir de proteínas naturales, que a menudo son aisladas de organismos exóticos o presentan dificultades para ser obtenidas y manejadas a escala industrial.

El ámbito de aplicación potencial más evidente de los conceptos presentados en esta investigación se da en la industria química y en la farmacéutica. “El uso de biocatalizadores, como el desarrollado en nuestro trabajo, permite realizar procesos químicos de manera extremadamente eficiente y sostenible y posibilita utilizar disolventes acuosos, no tóxicos, con una economía atómica total (sin generar subproductos). La purificación es muy sencilla y el proceso termina con una reducción muy significativa tanto de los costes energéticos como de los de producción. Nuestro grupo de investigación ha trabajado anteriormente con empresas punteras (Codexis, Inc., USA) en el desarrollo, usando otras metodologías, de algunos de estos biocatalizadores, que se han implementados para la síntesis, a gran escala, de intermedios necesarios para la obtención de los fármacos anti-colesterol y anti-diabetes simvastatina (Zocor®) y sitagliptina (Januvia®), entre otros”, señala Gonzalo Jiménez Osés.

En este estudio, que ha abarcado un periodo de 10 años desde su concepción hasta su publicación, se han combinado técnicas de simulación computacional basadas en mecánica cuántica y en mecánica newtoniana, métodos experimentales convencionales de expresión y purificación de proteínas y experimentos de evolución dirigida. Los biocatalizadores optimizados se han caracterizado mediante distintas técnicas (espectroscopía ultravioleta-visible, resonancia magnética nuclear, dicroísmo circular y difracción de rayos-X).

El trabajo ha sido desarrollado por el grupo de investigación de Gonzalo Jiménez Osés (CIC bioGUNE), en colaboración con los laboratorios de los profesores Ken Houk (Universidad de California, Los Angeles) y Donald Hilvert (ETH Zürich).

Sobre CIC bioGUNE

El Centro de Investigación bioGUNE (CIC bioGUNE), con sede en el Parque Científico Tecnológico de Bizkaia, es una organización de investigación biomédica que desarrolla investigación de vanguardia en la interfaz entre la biología estructural, molecular y celular, con especial atención en el estudio de las bases moleculares de la enfermedad, para ser utilizada en el desarrollo de nuevos métodos de diagnóstico y terapias avanzadas. CIC bioGUNE está reconocido como “Centro de Excelencia Severo Ochoa”, el mayor reconocimiento de centros de excelencia en España.

Sobre BRTA

BRTA es una alianza formada por 4 centros de investigación colaborativa (CIC bioGUNE, CIC nanoGUNE, CIC biomaGUNE y CIC energiGUNE) y 12 centros tecnológicos (Azterlan, Azti, Ceit, Cidetec, Gaiker, Ideko, Ikerlan, Lortek, Neiker, Tecnalia, Tekniker y Vicometch) que tienen el objetivo de desarrollar soluciones tecnológicas avanzadas para el tejido empresarial vasco.

Con el apoyo del Gobierno Vasco, el Grupo SPRI y las Diputaciones forales de los tres territorios, la alianza busca impulsar la colaboración entre los centros que la integran, reforzar las condiciones para generar y transmitir conocimiento a las empresas con la intención de contribuir a su competitividad y proyectar la capacidad científico-tecnológica vasca en el exterior.

BRTA cuenta con una plantilla de 3.500 profesionales, ejecuta el 22% de la inversión en I+D de Euskadi, registra una facturación anual superior a los 300 millones de euros y genera 100 patentes europeas e internacionales al año.

Sobre Ikerbasque

Ikerbasque - Fundación Vasca para la Ciencia- es el resultado de una iniciativa del Departamento de Educación del Gobierno Vasco que pretende reforzar la apuesta por la investigación científica mediante la atracción, recuperación y consolidación de investigadoras/es excelentes de todo el mundo. Actualmente, es una organización consolidada que cuenta con 290 investigadoras/es, que desarrollan su labor en todos los campos del conocimiento.

DATOS DEL ARTÍCULO

Título: Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold.
Autoras/autores: Sophie Basler, Sabine Studer, Yike Zou, Takahiro Mori, Yusuke Ota, Anna Camus, H. Adrian Bunzel, Roger C. Helgeson, K. N. Houk, Gonzalo Jiménez-Osés y Donald Hilvert.
https://www.nature.com/articles/s41557-020-00628-4

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Tuneable reverse photochromes in the sol...

A new technique allows the design of solid materia...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Un estudio de INCLIVA muestra el efecto ...

by INCLIVA

Han desarrollado un estudio para evaluar la correlación entre el teji...

Diapositiva de Fotos