El primer estudio sistemático de su clase concluye que los virus humanos, incluido el SARS-CoV-2, están mejor adaptados para infectar ciertos tipos de tejidos en función de su capacidad para apropiarse de la maquinaria celular y la síntesis de proteínas.

Los hallazgos, liderados por un equipo del Centro de Regulación Genómica (CRG), podrían contribuir al diseño de nuevos tratamientos antivirales, terapias génicas y vacunas más efectivos. El estudio se publica hoy en la revista Cell Reports.

Los seres vivos producen proteínas dentro de sus células. Cada proteína consta de unidades individuales de aminoácidos que se unen según las instrucciones codificadas en el ADN. Las unidades básicas de estas instrucciones se conocen como codones, cada uno de los cuales corresponde a un aminoácido específico. Un codón sinónimo es cuando dos o más codones producen el mismo aminoácido en la célula.

“Los diferentes tejidos usan diferentes lenguajes para producir proteínas, lo que significa que prefieren el uso de algunos codones sinónimos sobre otros. Lo sabemos porque los ARNt, las moléculas que reconocen los codones y se adhieren al aminoácido correspondiente, tienen diferentes abundancias en diferentes tejidos,” afirma Xavier Hernández, primer autor del estudio e investigador del CRG.

Cuando un virus infecta a un organismo, necesita apropiarse de la maquinaria del huésped para producir sus propias proteínas. El equipo científico investigó si los virus estaban adaptados específicamente para usar los codones sinónimos utilizados preferentemente por los tejidos que infectan.

El equipo científico descargó las secuencias de proteínas disponibles públicamente de todos los virus humanos conocidos y estudiaron su uso de codones. Teniendo en cuenta las abundancias conocidas de ARNt en diferentes tejidos, determinaron la capacidad de adaptación de 502 virus humanos para infectar 23 tejidos diferentes.

Las proteínas virales expresadas durante la etapa inicial de la infección están mejor adaptadas para apropiarse de la maquinaria de producción de proteínas del huésped. Según Xavier Hernandez, “los virus bien adaptados comienzan usando el lenguaje preferido de la célula, pero después de tomar el control total imponen un lenguaje nuevo que satisface sus propias necesidades. Esto es importante porque los virus se utilizan en terapias génicas para tratar enfermedades genéticas y, si queremos corregir una mutación en un tejido, debemos modificar el virus para que use el lenguaje óptimo para el tejido que tratamos.”

El equipo científico observó más de cerca cómo se adaptan diferentes virus respiratorios para infectar tejidos específicos en función de su uso de codones. Estudiaron cuatro coronavirus diferentes: SARS-CoV, MERS-CoV, SARS-CoV-2 y el coronavirus de murciélago que está más estrechamente relacionado con el SARS-CoV-2. También estudiaron el virus influenza A, H1N1, que causa la gripe común.

Descubrieron que el SARS-CoV-2 adaptó su uso de codones al tejido pulmonar, el tracto gastrointestinal y el cerebro. Como esto se alinea con síntomas conocidos de COVID-19 como la neumonía, la diarrea o la pérdida del olfato y el gusto, los investigadores plantean la hipótesis sobre qué futuros tratamientos y vacunas deberían tener en cuenta este factor para generar inmunidad en estos tejidos.

“De los virus respiratorios que examinamos de cerca, el SARS-CoV-2 es el que está mejor adaptado para apropiarse de la maquinaria de síntesis de proteínas de su tejido huésped, pero no más que la gripe o el coronavirus de murciélago. Esto sugiere que además de la eficiencia translacional, hay otros factores que juegan un rol importante en la infección, por ejemplo, la expresión del receptor ACE2 o el sistema inmunológico,” concluye Xavier Hernandez.

Los próximos pasos del equipo científico incluyen el desarrollo adicional de una herramienta biotecnológica para diseñar secuencias de proteínas optimizadas que contengan los codones adaptados para tratar el tejido de interés, que pueden ser útiles para el desarrollo de terapias génicas.

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

Uso de RNA móviles para mejorar la asim...

El gen AtCDF3 promueve una mayor producción de az...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Palobiofarma anuncia la finalización de...

by Palobiofarma

Palobiofarma S.L. se complace en anunciar la finalización del tratami...

Diapositiva de Fotos