Equipos del CNIO, del Leiden University Medical Center y del Netherlands Cancer Institute utilizan criomicroscopía electrónica para explicar cómo la proteína MutS, considerada la ‘guardiana’ del genoma, consigue reparar los errores que pueden producirse en el ADN durante la división celular
Conocer en profundidad este proceso es fundamental para comprender cómo se producen las mutaciones que pueden conducir al desarrollo de ciertos tipos tumorales, como el síndrome de Lynch o el cáncer de endometrio
El trabajo se publica en ‘Nature Structural & Molecular Biology’
Científicos del Grupo de Integridad Genómica y Biología Estructural que dirige Rafael Fernández-Leiro en el Centro Nacional de Investigaciones Oncológicas (CNIO) han descubierto cómo ciertas proteínas garantizan la reparación de los errores causados en el ADN durante su replicación. Utilizando criomicroscopía electrónica, han hecho visible la proteína MutS, también conocida como la guardiana de nuestro genoma, lo que les permitió describir cómo esta única proteína es capaz de coordinar este proceso esencial de reparación del ADN de principio a fin.
El estudio ha sido llevado a cabo en colaboración con Meindert Lamers, del Leiden University Medical Center, LUMC (Países Bajos), y Titia Sixma, del Netherlands Cancer Institute y el Oncode Institute. Sus resultados se publican en Nature Structural & Molecular Biology.
Entre las diferentes fases de la división celular se encuentra la replicación del ADN, durante la cual la polimerasa de ADN duplica la información genética de la célula para poder transferirla a la célula hija. A pesar de ser un mecanismo muy preciso, en ocasiones pueden producirse errores. Es fundamental que estos errores sean reparados, ya que de lo contrario pueden causar el desarrollo de tumores.
Los investigadores ya habían descrito en trabajos anteriores que la polimerasa de ADN cuenta con su propio corrector, una exonucleasa, gracias a la cual puede corregir los errores que se introducen durante la copia del ADN. Pero cuando este corrector es insuficiente, entra en escena la proteína MutS, que escanea el ADN copiado en busca de errores y, a continuación, inicia y finaliza la reparación de aquellos que detecta. Pero hasta ahora no estaba claro cómo una sola proteína puede coordinar tantos procesos diferentes. El estudio internacional que ahora se publica ha conseguido desentrañar el mecanismo.
“Utilizando criomicroscopía electrónica hemos podido observarla mientras lleva a cabo sus funciones, capturando su estructura molecular en sucesivas conformaciones. Con esta información hemos podido entender cómo una sola proteína es capaz de coordinar todo el proceso, que ha de ser extremadamente preciso”, explica Rafael Fernández-Leiro.
Conocer en profundidad el proceso de reparación de nuestro ADN, en el que están involucrados la propia ADN polimerasa, la exonucleasa y la proteína MutS, es fundamental para comprender cómo las alteraciones que se producen en alguna de estas proteínas conducen a mutaciones y, por lo tanto, a un mayor riesgo de desarrollar ciertos tipos tumorales, como el síndrome de Lynch o el cáncer de endometrio.
Los investigadores enfatizan que desentrañar las estructuras de las proteínas solo es posible debido a los enormes avances tecnológicos en microscopía electrónica en los últimos años.
“La criomicroscopía electrónica nos permite obtener imágenes a muy alta resolución de las proteínas mientras llevan a cabo su función. Utilizando estas imágenes podemos reconstruir en el ordenador la estructura tridimensional de la proteína y generar un modelo atómico que nos permite entender como funciona”, continúa Fernández-Leiro.
El estudio está financiado por el Ministerio de Ciencia e Innovación, el Instituto de Salud Carlos III, la Agencia Estatal de Innovación, UK Medical Research Council, Oncode Institute, NWO-Gravity y Horizontes 2020.
Artículo de referencia
The selection process of licensing a DNA mismatch for repair. Rafael Fernández-Leiro et al (Nature Structural & Molecular Biology, 2021). DOI: 10.1038/s41594-021-00577-7