Los materiales termoeléctricos, capaces de transformar el calor en electricidad, son muy prometedores a la hora de convertir el calor residual en energía eléctrica, ya que permiten aprovechar una energía difícilmente utilizable que, de otro modo, se perdería. Ahora, un equipo de investigadores del Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) ha creado un nuevo material termoeléctrico: se trata de un papel capaz de convertir el calor residual en energía eléctrica. Estos dispositivos podrían usarse para generar electricidad a partir de calor residual para alimentar sensores en el campo de la Internet de las Cosas, la Agricultura 4.0 o la Industria 4.0. Los resultados de la investigación se publican en la revista Energy & Environmental Science.

Este dispositivo está compuesto de celulosa producida en laboratorio por unas bacterias, con pequeñas cantidades de un nanomaterial conductor –nanotubos de carbono-, por lo que su producción resulta sostenible y respetuosa con el medio ambiente”, explica Mariano Campoy-Quiles, investigador del Instituto de Ciencia de Materiales de Barcelona

"En un futuro próximo, se podrían utilizar como dispositivos wearables, en aplicaciones médicas o deportivas, por ejemplo. Y si la eficiencia del dispositivo se optimizara aún más, este material podría dar lugar a un aislamiento térmico inteligente, o en sistemas de generación eléctrica híbridos fotovoltaicos-termoeléctricos", augura Campoy-Quiles.

Además, "debido a la alta flexibilidad de la celulosa y la escalabilidad del proceso, estos dispositivos podrían utilizarse en aplicaciones donde la fuente de calor residual tuviera formas poco regulares o áreas extensas, ya que se podrían recubrir totalmente con el material" indica Anna Roig, investigadora del estudio.

Como la celulosa bacteriana se puede fabricar en casa, tal vez estamos delante del primer paso hacia un nuevo paradigma energético, donde los usuarios se podrán fabricar sus propios generadores eléctricos. Todavía estamos lejos, pero este estudio representa un principio. Por algún sitio hay que empezar.

Cultivado en laboratorio

“En vez de fabricar un material para la energía, lo cultivamos", explica Campoy-Quiles. "Las bacterias, dispersas en un medio de cultivo acuoso que contiene azúcares y los nanotubos de carbono, van produciendo las fibras de nanocelulosa que acaban formando el dispositivo, donde quedan perfectamente dispersos los nanotubos de carbono", continúa.

"Se obtiene un material mecánicamente muy resistente, muy flexible y deformable, gracias a las fibras de celulosa, y con una elevada conductividad eléctrica, gracias a los nanotubos de carbono", explica Anna Laromaine, investigadora del estudio. "La intención es acercarnos al concepto de economía circular, utilizando materiales sostenibles y que no sean tóxicos para el medio ambiente, que se utilicen en poca cantidad, y que se puedan reciclar y reutilizar", explica Roig.

Roig afirma que, en comparación con otros materiales similares, este "tiene una estabilidad térmica superior a los materiales termoeléctricos basados en polímeros sintéticos, lo que permite llegar hasta los 250 ºC. Además, no utiliza elementos tóxicos, y se puede reciclar fácilmente la celulosa, degradándola mediante un proceso enzimático que la convierte en glucosa. Así, se recuperan al mismo tiempo los nanotubos de carbono, que son el elemento más costoso del dispositivo". Además, se puede controlar el grosor, el color e incluso la transparencia.

Campoy-Quiles explica que se han utilizado los nanotubos de carbono por sus dimensiones: "Gracias a su diámetro nanométrico y a las pocas micras de largo, los nanotubos de carbono permiten, con muy poca cantidad (en algunos casos hasta un 1%), conseguir que haya percolación eléctrica, es decir, un camino continuo donde las cargas eléctricas puedan viajar a través del material, permitiendo que la celulosa sea conductora y, al mismo tiempo, aislante térmico".

Además, el hecho de utilizar una cantidad tan pequeña de nanotubos (hasta un 10 % como máximo), conservando la eficiencia global de un material que tuviera el 100 %, se consigue un ahorro económico y energético muy significativo", añade Campoy-Quiles. "Por otra parte, las dimensiones de los nanotubos de carbono son similares a las nanofibras de celulosa, con lo que se consigue una dispersión homogénea. Además, la inclusión de estos nanomateriales tienen un impacto positivo en las propiedades mecánicas de la celulosa, haciéndola aún más deformable, extensible y resistente", añade Roig.

Este estudio es el resultado de un proyecto interdisciplinario (FIP-THERMOPAPER) entre diferentes grupos del Instituto de Ciencia de Materiales de Barcelona de la convocatoria "Frontier Inderdisciplinary Projects", una de las acciones estratégicas del proyecto de excelencia Severo Ochoa.

  • Deyaa Abol-Fotouh, Bernhard Dörling, Osnat Zapata-Arteaga, Xabier Rodríguez-Martínez, Andrés Gómez, J. Sebastian Reparaz, Anna Laromaine, Anna Roig and Mariano Campoy-Quiles. Farming thermoelectric paper. Energy & Environmental Science. DOI: 10.1039/C8EE03112F.
Subscribe to Directory
Write an Article

Recent News

Exposure to Heat and Cold During Pregnan...

The research team observed changes in head circumf...

Using mobile RNAs to improve Nitrogen a...

AtCDF3 gene induced greater production of sugars a...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Highlight

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

​En nuestro post hablamos sobre este interesante tipo de célula del...

Key breakthrough in autism: pivotal role...

by IRB Barcelona - Instituto de Investigación Biomédica

A study by IRB Barcelona unveils how the lack of a fraction of the CPE...

Photos Stream