Investigadores de la Universidad de Salamanca publican hoy en la revista Nature Communications un artículo que describe un nuevo mecanismo de regulación de la enzima IMP deshidrogenasa, que es clave para la división celular. Los científicos relacionan este hallazgo con enfermedades oculares como la retinosis pigmentaria, pero también con el cáncer, puesto que muchos fármacos antitumorales usados hoy en día atacan a esta enzima.

En concreto, la enzima IMP deshidrogenasa regula la producción de nucleótidos, que son los componentes del ADN y, si no hay suficientes nucleótidos para poder replicar el ADN, la célula no se puede dividir. Por eso, “hoy en día es una de las dianas quimioterapéuticas utilizadas en el tratamiento contra el cáncer”, explica a DiCYT José Luis Revuelta Doval, director del Grupo de Ingeniería Metabólica de la Universidad de Salamanca y principal autor del trabajo junto a Rubén Martínez-Buey, ambos profesores del Departamento de Microbiología y Genética.

Algunos de los medicamentos con actividad antitumoral, inmunosupresora o antiviral que se emplean en la actualidad se basan en impedir la producción de nucleótidos y, por lo tanto, la división de las células, reduciendo la actividad de esta enzima por mecanismos conocidos desde hace años. Sin embargo, “nosotros hemos descubierto que la enzima tiene otro mecanismo más sofisticado para regular su actividad y lo hemos caracterizado a nivel molecular, elucidando la estructura tridimensional de la enzima a resolución atómica”, señala Revuelta.

Los científicos han descubierto una implicación directa de este nuevo mecanismo en determinadas retinopatías, como la retinosis pigmentaria (también llamada retinitis pigmentosa) o la amaurosis congénita de Leber. Estas enfermedades se caracterizan por la alteración progresiva de los fotorreceptores de la retina, que finalmente genera ceguera. Algunos de los pacientes con retinosis pigmentaria o amaurosis congénita de Leber tienen mutaciones en la enzima IMP deshidrogenasa, de tal forma que ésta no puede regular su actividad mediante el mecanismo ahora descrito. De esta manera, se generan cantidades anormales de nucleótidos que, en última instancia, afectan principalmente a las células de la retina y son los causantes de dichas retinopatías.

Tratamientos de retinopatías

La retinosis pigmentaria es la degeneración hereditaria más frecuente de la retina, se produce en uno de cada 4.000 individuos, la sufren más de un millón y medio de personas en todo el mundo y es una de las causas más importantes de ceguera. Por eso, este descubrimiento tiene una especial relevancia y los investigadores de la Universidad de Salamanca ya están en contacto con un grupo de investigación irlandés experto en retinopatías con el que esperan utilizar esta nueva información para buscar posibles tratamientos, utilizando ensayos con modelos animales así como cultivos celulares humanos.

Producir más vitaminas B2 y B9 en microorganimos

Al margen de su potencial biomédico, esta investigación también tiene aplicaciones biotecnológicas. Al igual que en las células humanas, la desregulación de la enzima IMP deshidrogenasa en determinados microorganismos incrementa la producción de nucleótidos que son precursores directos de las vitaminas B2 y B9. Por lo tanto, su manipulación genética permite generar mutantes con un metabolismo alterado intencionadamente para producir más vitaminas. “En este caso, el objetivo es eliminar el mecanismo de regulación mediante ingeniería genética para permitir que la enzima desarrolle todo su potencial. De esta forma, conseguimos que los microorganismos reprogramen su metabolismo para incrementar la producción de vitaminas, lo que resulta muy interesante para la industria de la alimentación”, indica Revuelta.

En este estudio también han participado otros dos grupos de Salamanca, la Unidad de Biología Estructural del Centro de Investigación del Cáncer (CIC, centro mixto del CSIC y la Universidad de Salamanca) y el Departamento de Estrés Abiótico del Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC); además del Centro Nacional de Biotecnología (CNB, CSIC) y el Instituto de Biocomputación y Física de Sistemas Complejos de la Universidad de Zaragoza.

Referencia bibliográfica

Rubén M Buey, Rodrigo Ledesma-Amaro, Adrián Velázquez-Campoy, Mónica Balsera, Mónica Chagoyen, José M de Pereda and José L Revuelta. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nature Communications. DOI: 10.1038/NCOMMS9923

Imagen: Estructura tridimensional a resolución atómica (0,125 nanómetros) de una molécula del inhibidor GMP en el sitio activo de IMP deshidrogenasa. / Rubén M. Buey.

Subscribe to Directory
Write an Article

Recent News

Exposure to Heat and Cold During Pregnan...

The research team observed changes in head circumf...

Using mobile RNAs to improve Nitrogen a...

AtCDF3 gene induced greater production of sugars a...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Highlight

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

​En nuestro post hablamos sobre este interesante tipo de célula del...

Un estudio preclínico mejora el tratami...

by CIMA - Centro de Investigación Médica Aplicada

Investigadores del Cima Universidad de Navarra constatan que la combin...

Photos Stream