Collaborating IBEC groups have published a study in Nature Communications that reveals that electron transfer can take place while a protein is approaching its partner site, and not only when the proteins are engaged, as was previously thought.

The results open up a new way of thinking about how proteins interact, and can have implications in a better understanding of many processes – such as photosynthesis, respiration and detoxification – in which electron transfer plays an important role.

The relocation of an electron from one chemical entity to another – electron transfer (ET) – doesn’t happen passively: electrons are carried individually by redox proteins.

The demands on the ET capabilities of these proteins are conflicting: their binding must be tight to keep ET rates high, but sufficiently weak to allow a high turnover rate and overall ET efficiency. As redox partners approach each other, an ‘initial encounter’ complex is formed that leads to a final ‘active’ complex – which is when ET was previously thought to happen.

The structure of some active complexes between redox partner proteins has been revealed by X-ray crystallography, and substantial differences observed in the distance between the active sites of several has raised the question of whether ET between proteins can already occur while the protein is approaching its partner site. Together with collaborators from the UB and the University of Seville, the researchers in IBEC’s Nanobioengineering group worked with its Nanoprobes and Nanoswitches group (led by Pau Gorostiza, right) to use a technique called electrochemical tunneling spectroscopy to show that the current between two redox partner proteins occurs at strikingly long distances.

“Computational simulations suggest proteins can manipulate the solution they’re surrounded by in order to perform their ET functions,” explains Anna Lagunas, a senior researcher in IBEC’s Nanobioengineering group and first author of the paper. “We saw a reduced ionic density between the proteins that gives rise to a conduit that extends their electric field through the aqueous solution.”

The observation challenges the common assumption that the formation of a tight complex between the protein partners is required for charge to be transferred, and may provide an explanation to how redox protein partners conciliate high specificity with weak binding in order to maintain the high turnover rate required for ET.

A. Lagunas, A. Guerra-Castellano, A. Nin-Hill, I. Diaz-Moreno, M. A. De la Rosa, J. Samitier, C. Rovira, P. Gorostiza (2018). Long distance electron transfer through the aqueous solution between redox partner proteins. Nature Communications, epub ahead of print

Subscribe to Directory
Write an Article

Recent News

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Tuneable reverse photochromes in the sol...

A new technique allows the design of solid materia...

Highlight

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

​En nuestro post hablamos sobre este interesante tipo de célula del...

ARTHEx Biotech, backed by Columbus Ventu...

by ARTHEx Biotech

ARTHEx Biotech S.L., a clinical-stage biotechnology company focused o...

Photos Stream