The journal Nanoscale has published recent results from a collaborative Marie-Curie Initial Training Network (ITN) (RADDEL), funded by the European Commission FP7 and coordinated by Dr.Gerard Tobias from the ICMAB-CSIC. RADDEL aims to develop novel diagnostic and therapeutic tools based on nanocapsules in the form of filled carbon nanotubes. Dr. Belén Ballesteros, Leader of the ICN2 Electron Microscopy Division, played a key role in this research which explores the use of carbon nanotubes as drug delivery vehicles.

Carbon nanotubes have already found many applications, being the most prominent one their use in composite materials for sport goods, which are commercially available. They are also attractive nanoplatforms in the biomedical field with a variety of applications that range from scaffolds to drug delivery vehicles. In this area, their use as radionuclide carriers for imaging and therapeutic purposes has been very limited. Whereas the nanotube’s internal cavities offer a suitable environment for the encapsulation of payloads of interest, their high external surface can be used for the anchoring of targeting functionalities, thus providing selectivity to the nanocarriers.

In this study, the collaborators have combined the endohedral and exohedral modification of carbon nanotubes to design a novel targeted anticancer therapy system. The nanotubes were filled with the model non-radioactive materials SmCl3 and LuCl3 and sealed, followed by the external functionalization with the monoclonal antibody Cetuximab. Cetuximab targets Epidemial growth factor receptors (EGFR) that are overexpressed by several cancer cells. The targeting efficacy was assessed in vitro for U87 EFGR+ cancer cells, and the nanocarrier was able to selectively accumulate into the cancer cells with no significant cytotoxicity observed.

These results open up new frontiers in the development of novel nanomaterials for biomedical applications in the areas of cancer diagnosis and therapy. The network is currently assessing the in vivo performance of these nanocarriers by using the equivalent hot radioactive compounds.

Reference of the article:

C. Spinato, A. P. Ruiz de Garibay, M. Kierkowicz, E. Pach, M. Martincic, R. Klippstein, M. Bourgognon, J. T-W. Wang, C. Ménard-Moyon, K. T. Al-Jamal, B. Ballesteros, G. Tobias, A. Bianco;Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy; Nanoscale, DOI: 10.1039/C5NR07923C (2016).

http://pubs.rsc.org/en/content/articlelanding/2016/nr/c5nr07923c#!divAbstract

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

La exposición al frío y al calor duran...

El equipo de investigadores observó cambios en el...

Uso de RNA móviles para mejorar la asim...

El gen AtCDF3 promueve una mayor producción de az...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Un estudio preclínico mejora el tratami...

by CIMA - Centro de Investigación Médica Aplicada

Investigadores del Cima Universidad de Navarra constatan que la combin...

Diapositiva de Fotos