Un artículo publicado en Nature Communications ha desvelado que algunos microorganismos poseen un sistema desconocido hasta ahora para la detección y corrección de errores del material genético. Este nuevo mecanismo previene que algunas bacterias, como Mycobacterium tuberculosis, desarrollen muy fácilmente resistencia a los antibióticos. El descubrimiento abre las puertas al desarrollo de nuevas estrategias para combatir estas resistencias de algunas bacterias patógenas. Además, puede utilizarse para mejorar el rendimiento de procesos biotecnológicos de interés industrial.

Para corregir los errores que se hayan producido durante la replicación del ADN, algunos microorganismos utilizan una maquinaria diferente a la conocida hasta ahora en el resto de los seres vivos.

Es lo que desvela un trabajo publicado en la revista científica Nature Communications. El estudio ha sido liderado por Jesús Blázquez, investigador del Centro Nacional de Biotecnología del CSIC (CNB-CSIC), con la participación de la Universidad de Sussex (Reino Unido), el Instituto de Biomedicina de Sevilla (IBIS-CSIC), el Hospital Virgen del Rocío de Sevilla, el Hospital Gregorio Marañón de Madrid y el Hospital de Oslo (Noruega).

Según los autores, este descubrimiento puede tener aplicaciones en el desarrollo de soluciones a problemas de salud pública y contaminación ambiental, así como ayudar a optimizar procesos biotecnológicos de interés industrial.

Minuciosas revisoras del genoma

En la gran mayoría de los organismos, existe un sistema encargado de revisar y corregir los errores que se hayan producido al copiar el ADN, impidiendo que se produzca un elevado número de mutaciones. “Si falla este proceso se acumulan mutaciones y se pueden producir nuevas combinaciones de genes, originando importantes consecuencias. Por ejemplo, las bacterias patógenas pueden adquirir fácilmente resistencia a los antibióticos, que dejan de ser eficientes contra la infección”, explica Blázquez.

Hasta ahora este mecanismo era considerado único en los seres vivos. Sin embargo, este estudio ha demostrado que existe un nuevo mecanismo completamente diferente.

“Hemos descubierto que algunas bacterias y arqueobacterias presentan un sistema de corrección diferente, en el cual la encargada de detectar y resolver este tipo de errores en el ADN es una proteína llamada NucS –explican Blázquez y Castañeda (dos de los autores del trabajo)–. La actividad de esta proteína previene que algunas bacterias como Mycobacterium tuberculosis, causante de la tuberculosis, adquieran muy fácilmente resistencia a los antibióticos.”

La tuberculosis es una de las enfermedades que más muertes causa en el mundo. En 2015 se contabilizaron cerca de 1.8 millones y casi 500.000 desarrollaron resistencia a los dos antibióticos más utilizados en su tratamiento (datos de la OMS), lo que obliga a buscar alternativas y complica enormemente el tratamiento de la enfermedad.

“Si queremos combatir el desarrollo de resistencias a antibióticos en bacterias patógenas, el primer paso es conocer los mecanismos naturales que controlan la aparición de mutaciones. Por tanto, el descubrimiento de este nuevo mecanismo puede ofrecernos estrategias para combatir el desarrollo de resistencia a antibióticos y la aparición de lo que se ha dado en llamar superbacterias”.

Pero, además, los investigadores aseguran que este descubrimiento también puede facilitar la optimización de ciertos procesos industriales.

Nuevas opciones para la industria biotecnológica

“El descubrimiento de este nuevo sistema basado en NucS abre muchas posibilidades, ya que existen muchos microorganismos de interés industrial o ecológico que poseen dicho sistema. Podemos, por ejemplo, construir mediante ingeniería genética variantes optimizadas de especies como Bifidobacterium y Streptomyces, muy utilizadas en la industria”, asegura Blázquez.

El grupo de investigación ya ha presentado una solicitud de patente internacional para el desarrollo de mutantes en especies de interés biomédico e industrial, como, entre otras, Mycobacterium, Streptomyces, Bifidobacterium, Rhodococcus, Pyrococcus y Thermococcus, con el nuevo sistema de corrección del ADN anulado. Estas cepas modificadas pueden ser útiles en procesos industriales destinados a producir compuestos de interés como antibióticos, antitumorales, inmunosupresores, herbicidas o insecticidas entre otros, o variantes mejoradas para su uso en biorremediación.

  • A. Castañeda-García, A. I. Prieto, J. Rodríguez-Beltrán, N. Alonso, D. Cantillon, C. Costas, L. Pérez, E. D. Zegeye, M. Herranz, P. Plociński , T. Tonjum, D. García de Viedma, M. Paget, S.J. Waddell, A. M. Rojas, A. J. Doherty and J. Blázquez A non-canonical mismatch repair pathway in prokaryotes Nature Communications Doi: 10.1038/NCOMMS14246.

Imagen: La cepa de Mycobacterium con el gen nucS eliminado (1) produce una gran cantidad de mutantes resistentes al antibiótico del medio. La cepa con el gen nucS activo (2) produce muchos menos mutantes. Jesús Blazquez, CNB-CSIC

Subscribirse al Directorio
Escribir un Artículo

Últimas Noticias

Uso de RNA móviles para mejorar la asim...

El gen AtCDF3 promueve una mayor producción de az...

El diagnóstico genético neonatal mejor...

Un estudio con datos de los últimos 35 años, ind...

Más de 1.500 cambios epigenéticos en e...

Un equipo de investigadores de la Universidad Juli...

Destacadas

Eosinófilos. ¿Qué significa tener val...

by Labo'Life

En nuestro post hablamos sobre este interesante tipo de célula del si...

Horizon pone en marcha una planta punter...

by Horizon Products

Horizon ha puesto en funcionamiento una nueva planta dedicada íntegra...

Diapositiva de Fotos